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Within the framework of a two-temperature approximation, mathematical simulation of the process of filtra-
tional evaporative cooling of a heat-releasing bed is performed. Based on this, an engineering method for cal-
culating the cooling of a granular bed has been developed; it allows one to determine the position and size
of the evaporation zone and pressure drops in the system. The conditions for the existence of various regimes
of evaporative cooling (the presence of one, two, or three zones of heating and evaporation of a heat carrier)
have been obtained in dimensionless form.

Introduction. As is known [1], liquid evaporative cooling of a heat-releasing disperse bed possesses a
number of qualitatively new properties as compared to similar processes, the heat carrier in which is a gas. The
major features of such a process are: the high heat-transfer intensity in phase conversion of a heat carrier inside a
granular bed, a substantial increase in the efficiency of cooling due to the heat of vaporization, and a low flow
rate of a liquid coolant.

Despite the fact that the major principles of this method of cooling have been known for a long time [2], up
to now there has not been a single consistent method of calculating heat exchangers with bulk heat generation in the
presence of phase transition [3]. We note that most of the works published are devoted to theoretical and experimental
studies of liquid evaporation in a porous heat-releasing element in application to cooling of the thermally stressed ele-
ments of the structures of flying vehicles [3]. A granular bed predominantly consisting of particles of regular shape
differs substantially in hydraulic and thermophysical properties from a porous matrix with a very small specific vol-
ume, which leads to essential differences in the processes of heat transfer in these systems. The information on heat-
releasing disperse media is fragmentary (see, e.g., [4–7]) and does not allow one to reliably calculate the processes
proceeding during the flow and evaporation of a liquid heat carrier with allowance for geometric and transfer charac-
teristics of the bed.

In the present work, the task was set to develop a simple engineering method for calculating evaporative cool-
ing of a heat-releasing granular bed for a wide range of acting conditions on the basis of mathematical simulation that
takes into account basic thermohydraulic features of the process.

Basic Assumptions. A simplified scheme of evaporative cooling of a heat-releasing bed is presented in Fig.
1. The disperse bed consists of spherical particles of diameter d. A liquid of flow rate Jf and temperature T0 is sup-
plied to the bed inlet. In the general case, there are three zones: I, the zone of liquid motion, II, the zone of evapo-
ration, and III, the zone of vapor motion. In formulating the model, the following assumptions were made:

1) there are two interpenetrating continua (a heat carrier — solid particles);
2) the process is stationary, the position of the evaporation zone does not change in time;
3) the power of heat release is constant;
4) vapor is considered as a perfect gas;
5) the slip of the heat-carrier phases in the evaporation zone is neglected;
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6) the values of dTf
 ⁄ dx and dTs

 ⁄ dx in the beginning and at the end of the evaporation zone are assumed to

be rather small 




dTf

dx



x=h1;h2

 = 
dTs

dx



x=h1;h2

C 0
 



 ;

7) the heat-carrier temperature in the evaporation zone is equal to the saturation temperature and does not dif-
fer noticeably from the temperature of the particles;

8) the pressure drop is calculated from the Ergun equation [8].
Equations of the Evaporative-Cooling Model. Subject to the above-made assumptions, the equations describ-

ing the process of heat transfer in the system have the following form:
in zone I (0 ≤ x ≤ h1)

Jfcliq 
dTf

 I

dx
 = 

d

dx
 



λf

Iε 
dTf

 I

dx




 + 

6 (1 − ε) αI

d
 Ts

 I
 − Tf

 I
 , (1)

0 = 
d

dx
 



λs

I
 (1 − ε) 

dTs
 I

dx




 + 

6 (1 − ε) αI

d
 Tf

 I
 − Ts

 I
 + Q (1 − ε) , (2)

− 
dp

I

dx
 = 150 

(1 − ε)2

ε3  
µliquliq

d
2  + 1.75 

(1 − ε)

ε3  
ρliquliq

2

d
 ; (3)

in zone II (h1 < x ≤ h2)

Jf 
di

dx
 = 

d

dx
 



λf

IIε 
dTf

 II

dx




 + 

6 (1 − ε) αII

d
 Ts

 II
 − Tf

 II
 , (4)

Fig. 1. Schematic diagram of evaporative cooling of a heat-releasing granular bed.
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0 = 
d

dx
 



λs

II
 (1 − ε) 

dTs
 II

dx




 + 

6 (1 − ε) αII

d
 Tf

 II
 − Ts

 II
 + Q (1 − ε) , (5)

− 
dp

II

dx
 = 150 

(1 − ε)2

ε3  
µfuf

d
2  + 1.75 

(1 − ε)

ε3  
ρfuf

2

d
 ; (6)

in zone III (h2 < x ≤ h)

Jfcv 
dTf

 III

dx
 = 

d

dx
 



λf

IIIε 
dTf

 III

dx




 + 

6 (1 − ε) αIII

d
 Ts

 III
 − Tf

 III
 , (7)

0 = 
d

dx
 



λs

III
 (1 − ε) 

dTs
 III

dx




 + 

6 (1 − ε) αIII

d
 Tf

 III
 − Ts

 III
 + Q (1 − ε) , (8)

− 
dp

III

dx
 = 150 

(1 − ε)2

ε3
 
µvuv

d
2

 + 1.75 
(1 − ε)

ε3
 
ρvuv

2

d
 . (9)

Boundary Conditions. With allowance for assumptions (6) and (7) and using the Danckwerts conditions [9]
for the heat carrier at x = 0, h, we have

x = 0 ,   cliqJf 

Tf

 I
 − T0


 = λf

Iε 
dTf

 I

dx
 + λs

I
 (1 − ε) 

dTs
 I

dx
     (Danckwerts condition) ,

λs
I
 (1 − ε) 

dTs
 I

dx
 = α~ Ts

 I
 − T0


     (preheating of heat carrier) ;

(10)

x = h1 ,   p
I
 = p

II
 ,   Tf

 I
 = Tf

 II
 = Tsat ,   

dTf
 I

dx
 = 

dTf
 II

dx
 = 0 ,   Ts

 I
 = Ts

 II
 ,   

dTs
 I

dx
 = 

dTs
 II

dx
 = 0 , x~ = 0; (11)

x = h2 ,   p
II

 = p
III

 ,   Tf
 II

 = Tf
 III

 = Tsat ,   
dTf

 II

dx
 = 

dTf
 III

dx
 = 0 ,   Ts

 II
 = Ts

 III
 ,   

dTs
 II

dx
 = 

dTs
 III

dx
 = 0 , x~ = 1; (12)

x = h ,   p
III

 = patm ;   
dTf

 III

dx
 = 0     (Danckwerts condition) ,     

dTs
 III

dx
 = 0 . (13)

Integral Relations. These are the heat-balance equations derived on the basis of the heat-conduction equations
(1), (2), (4), (5), (7), and (8).

Zone I. We combine Eqs. (1) and (2) and integrate the resulting equation over x from 0 to h1:

Jfcliq Tsat (p (h1)) − Tf
 I
 (0) =

= λf
Iε 

dTf
 I
 (h1)

dx
 + λs

I
 (1 − ε) 

dTs
 I
 (h1)

dx
 − λf

Iε 
dTf

 I
 (0)

dx
 − λs

I
 (1 − ε) 

dTs
 I
 (0)

dx
 + Q (1 − ε) h1 . (14)
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Using the boundary conditions (10) and (11), we obtain the sought-for heat-balance equation from Eq. (14)

Jfcliq Tsat (p (h1)) − T0

 = Q (1 − ε) h1 , (15)

which yields the following equation for calculating the magnitude of zone I

h1 = Jfcliq Tsat (p (h1)) − T0


 ⁄ [Q (1 − ε)] . (16)

Zone II. We combine Eqs. (4) and (5) and integrate over x from h1 to h2 subject to conditions (11) and (12):

Jf (iv − iliq) = Q (1 − ε) (h2 − h1) . (17)

Integrating the equation [10]
di
dx

 = L 
dx~

dx
(18)

over x from h1 to h2, subject to the conditions x~(h1) = 0 and x~(h2) = 1, we write

iv − iliq = L . (19)

For the magnitude of the evaporation zone, Eqs. (17) and (19) yield

∆h = h2 − h1 = 
JfL

Q (1 − ε)
 . (20)

Zone III. An analogous operation of integration of Eqs. (7) and (8), using boundary conditions (12) and (13),
gives

Jfcv Tf
 III

 (h) − Tsat (p (h2)) = Q (1 − ε) (h − h2) . (21)

The heat-balance equation for the whole bed will be obtained as a result of summation of Eqs. (15), (17), and (21):

Q (1 − ε) h = Jf 

cliq Tsat (p (h1)) − T0


 + iv − iliq + cv Tf

 III
 (h) − Tsat (p (h2))


 . (22)

The physical meaning of Eq. (22) is that the heat released from the disperse bed is spent as follows: 1) to
heat liquid from T0 to Tsat(p(h1)) in zone I; 2) to raise the enthalpy of the heat carrier from iliq to iv (liquid evapora-
tion) in zone II; 3) to heat the vapor from Tsat(p(h2)) up to Tf

III(h) in zone III.
We should note that formulas (16) and (20) determine the dependence of the dimensions of zones I and II on

the basic parameters of the process: Jf, Q, L, T0, and cliq.
Nondimensionalization. Zone I (0 ≤ ξ ≤ ξ1)

dθf
I

dξ
 = 

d

dξ
 







1

Pef
I 

dθf
I

dξ







 + 

1

Pe
I 

θs

I
 − θf

I
 ,

(23)

0 = 
d

dξ
 







1

Pes
I  

dθs
I

dξ







 + 

1

Pe
I 

θf

I
 − θs

I
 + 4

^  I
 , (24)

− D0
I
 
d (pI)′

dξ
 = 150 

(1 − ε)2

ε3  Re
I
 + 1.75 

(1 − ε)

ε3  (Re
I)2 . (25)
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Zone II (ξ1 < ξ ≤ ξ2). With allowance for Tf
II(h)  = Tsat(p

II(h))  C Ts
II(h), to describe zone II we use the

equations

dx~

dξ
 = QL , (26)

dθf
II

dξ
 = 1.405 

p~0 − patm

Tsat (patm) − T0

   
1

(pII)0.75 
d (pII)′

dξ
 , (27)

− D0
II

 
d (pII)′

dξ
 = 150 

(1 − ε)2

ε3
 Re

II
 + 1.75

(1 − ε)

ε3  (Re
II)2 . (28)

Equation (26) is based on the condition that the entire heat released in zone II is spent to vaporize the liquid. Equa-
tion (27) was obtained by approximating the data of [11] on the saturation temperature for water:

Tsat (p) = 5.62p
0.25

 + 273 . (29)

Zone III (ξ2 < ξ ≤ 1):

dθf
III

dξ
 = 

d

dξ
 







1

Pef
III 

dθf
III

dξ







 + 

1

Pe
III 


θs

III
 − θf

III
 ,

(30)

0 = 
d

dξ
 







1

Pes
III 

dθs
III

dξ







 + 

1

Pe
III 


θf

III
 − θs

III
 + 4

^  III
 , (31)

− D0
III

 
d (pIII)′

dξ
 = 150 

(1 − ε)2

ε3
 Re

III
 + 1.75 

(1 − ε)2

ε3
 (Re

III)2 . (32)

The boundary conditions are

ξ = 0 ,   θf
I
 = 

1

Pef
I
 
dθf

I

dξ
 + 

1

Pes
I  

dθs
I

dξ
 ,   θs

I
 = 6 (1 − ε) 

Pe~

Pes
I 

h

d
 
dθs

I

dξ
 ; (33)

ξ = ξ1 ,   (pI)′ = (pII)′ ,   θf
I
 = θf

II
 = θsat ,   

dθf
I

dξ
 = 

dθs
I

dξ
 = 0 ,   x~ = 0 ; (34)

ξ = ξ2 ,   (pII)′ = (pIII)′ ,   θf
II

 = θf
III

 = θsat ,   
dθs

III

dξ
 = 0 ,   x~ = 1 ; (35)

ξ = 1 ,   (pIII)′ = 0 ,   
dθf

III

dξ
 = 

dθs
III

dξ
 = 0 . (36)
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Parameters of the Evaporative-Cooling Model. The effective thermal conductivity coefficients [12] are

λf
I ⁄ λliq

0
 = 1 + 0.03Re

I
Pr

I
 , (37)

λf
III ⁄ λv

0
 = 1 + 0.03Re

III
Pr

III
 , (38)

λs
I ⁄ λliq

0
 = 12 + 0.85Re

I
Pr

I
 + 

0.3024

(κ + σ) λliq
0  





Ts
 I

100





3

 , (39)

λs
III ⁄ λv

0
 = 12 + 0.85Re

III
Pr

III
 + 

0.3024

(κ + σ) λv
0
 




Ts
 III

100





3

 . (40)

We note that the radiative component λs is calculated by the method of [13].
The coefficients of interphase heat exchange [14] are

Nu
I
 = 













0.4 




Re
I

ε




2 ⁄ 3

 (Pr
I)1

 ⁄ 3 ,         Re
I ⁄ ε > 200 ,

1.6⋅10
−2

 




Re
I

ε





1.3

 (Pr
I)1

 ⁄ 3 ,   Re
I ⁄ ε ≤ 200 ;

(41)

Nu
III

 = 













0.4 




Re
III

ε




2 ⁄ 3

 (Pr
III)1

 ⁄ 3 ,         Re
III ⁄ ε > 200 ,

1.6⋅10
−2

 




Re
III

ε




1.3

 (Pr
III)1

 ⁄ 3 ,   Re
III ⁄ ε ≤ 200 .

(42)

The thermophysical characteristics of a two-phase heat carrier in zone II [1] are

ρf = 
ρvρliq

ρv + x~ρliq
 ,   µf = µliq (1 − x~) + µvx~ . (43)

Calculations by the developed model were performed for the system "water–steam" for which, based on ref-
erence values [11], the following approximating dependences were used:

µliq = 0.01 Tf
 I


−0.76
 ,   λliq

0
 = 0.5 Tf

 I


0.06
 ; (44)

ρv = 0.00352p
III ⁄ Tf

 III
 ,   µv = 2.64⋅10

−7
 Tf

 III


0.74
 ,   λv

0
 = 0.00021 Tf

 III


0.84
 . (45)

Numerical Simulation of the Process of Filtrational Evaporative Cooling. The formulated boundary-value
problem (23)–(32) with boundary conditions (33)–(36) was solved numerically by the method of collocations [15].
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Calculation procedure for the case of existence of zone I alone. For this purpose, Eqs. (23)–(25) with condi-
tions (33) and (36) are used.

Calculation procedure for the case of existence of zones I and II. First, using Tsat(patm) and Eq. (16), the
value of h1

[0] was estimated; ∆h was calculated from Eq. (20), and the conditions of the absence of zone III (h2 ≥ h)
was checked. Then, within the framework of the iterative process, the following procedures were performed succes-
sively:

a) the problem for zone II was solved with the boundary conditions ξ = ξ1
[k]

, x~ = 0; ξ = 1, θf
II = 1, (pII)′ = 0;

b) the problem for zone I was solved with the boundary conditions (33) at ξ = 0, ξ = ξ1
[k]

, (pI)′ = (pII)′;

dθf
I

dξ
 = 

dθs
I

dξ
 = 0;

c) the value of h1
[k+1]

 was confirmed with the aid of Eq. (16) at Tsat(p(h1
[k]

)), where p(h1
[k]

) is the pressure at
the interface of zones I and II calculated in the course of the kth iteration (k ≥ 1);

d) the value obtained was compared with h1
[k].

The condition of completion of the iteration process is







1 − 

h1
[k]

h1
[k+1]







 ≤ 10

−3
 .

(46)

Calculation procedure for the general case of the existence of all three zones. Preliminarily, the magnitude of
zone I h1

[0] at Tsat(patm) was estimated and the condition h2 < h was checked. Thereafter, within the framework of an
analogous iterative process the following procedures were carried out:

a) the problem for zone III was solved with the boundary conditions ξ = ξ2
[k], θf

III = θsat(p(ξ2)), 
dθf

III

dξ
 = 0; ξ

= 1, (pIII)′ = 0; 
dθf

III

dξ
 = 

dθs
III

dξ
 = 0;

b) the problem for zone II was solved with the boundary conditions ξ = ξ2
[k], x~ = 1, (pII)′ = (pIII)′; θf

II =
θf

III = θsat(p(ξ2));

c) the problem for zone I was solved with the boundary conditions (33) at ξ = 0, ξ = ξ1
[k], (pI)′ = (pII)′;

dθf
I

dξ
 = 

dθs
I

dξ
 = 0;

d) the value of h1
[k+1] was refined by Eq. (16) at Tsat(p(h1

[k]));
e) the quantities h1

[k] and h1
[k+1] were compared;

f) the computation was considered completed if condition (46) is satisfied.
In the case where

h1 = 
Jfcliq (Tsat (h1) − T0)

Q (1 − ε)
 ≥ h , (47)

which at Tsat(h1) = Tsat(patm) yields

4
^ I

 ≤ 1 , (48)

only zone I exists. For the pressure drop the following formula is obtained:

D
I

DEr
I

 = 1.15 − 1.9 


d

h





0.25

 4
^ I

 , (49)

which approximates the calculated data with a standard error of about 4%.
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The results of calculations of the temperatures of phases and of the pressure drop are shown in Figs. 2 and
3; Fig. 2 presents the temperature and pressure profiles for the case of existence of zones I and II, which, with ac-
count for Eqs. (16) and (20), corresponds to the condition

Jf

Q (1 − ε)
 cliq (Tsat (h1) − T0) + L ≥ h . (50)

Relation (50) in dimensionless form, subject to Tsat(p(h1)) C Tsat(p0) (see Figs. 2 and 3), takes the form

θsat (p′)p′=1

4
^ 1  + 

1

QL

 ≥ 1 . (51)

To determine the magnitude of pressure at the inlet into the bed, the following relation was obtained:

D0

DEr
III

 = 
(d ⁄ h)

−0.45
QL

7.5

0.008 − 3 


d
h




−0.38

QL
6.4

 , (52)

which describes the calculated values with a standard error of about 6%.
Figure 3 presents the temperature and pressure profiles for the general case where there are three zones in the

heat-releasing bed, i.e.,

h1 + ∆h < h . (53)

Subject to (16), (20), and Tsat(p(h1)) C Tsat(p0), this condition has the form

θsat (p′)ξ=0

4
^ 1

 + 
1

QL

 < 1 . (54)

The value of p0 in this case was calculated by a formula similar to Eq. (52):

Fig. 2. Temperature and pressure profiles in a granular bed in the presence of
zones I and II (h = 0.5 m, d = 0.001 m, Jf = 1 kg/(m2⋅sec), T0 = 293 K): a)
Q = 1.8⋅106 W/m3; b) 4.3⋅106; solid lines, heat carrier; dashed lines, particles.
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D0

DEr
III = 

(d ⁄ h)
0.25

QL
2.2

0.5 + 0.22 


d
h




0.25

QL
2.2

 . (55)

The error in using Eq. (55) does not exceed 10%.
It should be noted that, just as in the case of existence of zone I alone, so in the presence of several zones

in zones I and III (Figs. 2 and 3), virtually linear profiles of Tf and Ts are realized for the given specific conditions.
Here, the temperatures of water and particles differ insignificantly. Evidently, such changes in the temperatures of
phases can be described by the simplified equation

J 
dT
dx

 = Q (1 − ε) . (56)

Conclusions. Mathematical simulation of thermohydraulic processes occurring in a heat-releasing bed of
spherical particles in the presence of a first-order phase transition (liquid evaporation) is carried out. For water evapo-
ration, the profiles of temperature and pressure have been calculated for different conditions of the occurrence of the
processes of heating and evaporation of a heat carrier. Based on this, a simple engineering method of calculation of
the system of evaporative cooling has been developed. It includes

1) dimensionless conditions of the existence of one, two, and all three zones of cooling — Eqs. (48), (51),
and (54);

2) approximating dependences for calculating the pressure drop in a granular bed — Eqs. (49), (52), and (55);
3) formulas (16) and (20) for calculating the position and magnitude of the liquid evaporation zone (on the

basis of numerical calculations of the process of evaporation, the possibility of replacing Tsat(p(h1)) in Eq. (16) by
Tsat(p(p0)), where p0 is calculated from Eq. (52) or Eq. (55) is shown).

NOTATION

cliq, cv, specific heats of liquid and vapor at constant pressure, J/(kg⋅K); d, diameter of particles, m; D0 =

p0 − patm

h
 

d3ρ~v

(µvT=373K)
2; DI = 

p0 − patm

h
 

d3ρliq

(µliqT=373K)
2; D0

I  = 
p~0 − patm

h
 
d3ρliq

(µliq)
2;  D0

II = 
p~0 − patm

h
 
d3ρf

(µf)2
; D0

III =

p~0 − patm

h
 
d3ρv

(µv)2
; DEr

I  = 150 
(1 − ε)2

ε3  Re0
1 + 1.75 

(1 − ε)
ε3  (Re0

1)2; DEr
III = 150 

(1 − ε)2

ε3  Re0
III + 1.75 

(1 − ε)
ε3  (Re0

III)2; D
~

0 =

Fig. 3. Temperature and pressure profiles in a granular bed in the presence of
all three zones at Q = 4.7⋅106 W/m3. The remaining parameters and symbols
are same as in Fig. 2. 
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150 
(1 − ε)2

ε3  Re0 +1.75 
(1 − ε)
ε3  Re0

2; h, height of the granular bed, m; h1, height of zone I, m; h2, coordinate of the

end of the evaporation zone, m; i, enthalpy of water-steam mixture, J/kg; iliq, enthalpy of liquid saturation, J/kg; iv,

enthalpy of vapor saturation, J/kg; Jf, heat-carrier mass flow, kg/(m2⋅sec);  L, specific heat of vaporization, J/kg; NuI

= 
αId

λliq
0 , NuIII = 

αIIId

λv
0 , Nusselt numbers; Pef

I = 
cliqJfh

ελf
I , Pef

III = 
cvJfh

ελf
III , PeI = 

cliqJfh

6αI(1 − ε)h
, PeIII = 

cvJfh

6αIII(1 − ε)h
, Pes

I =

cliqJfh

(1 − ε)λs
I
, Pes

III = 
cvJfh

(1 − ε)λs
III

, Pe
~

 = 
cliqJfh

6α~(1 − ε)h
, Peclet numbers; PrI, PrIII, Prandtl numbers for liquid and vapor; p, pressure,

Pa; p0, pressure at the inlet to the granular bed, Pa; p~0 = 
µliq

2 (T0)h

ρliq(T0)d3D
~

0 + patm, Pa; p′ = (p − patm)/ (p~ − patm); qin, interphase

heat flux, W/m2; Q, heat release power, W/m3; 4
^  I = 

Q(1 − ε)h
cliqJf(Tsat(patm) − T0)

; 4
^  III = 

Q(1 − ε)h
cvJf(Tsat(patm) − T0)

; 4
^

L =

Q(1 − ε)h
JfL

; ReI = 
Jfh

µliq
, ReII = 

Jfd

µf
, ReIII = 

Jfd

µv
, Re0

I  = 
Jfd

µliqT=373K
, Re0

III = 
Jfd

µvT=373K
, Re0 = 

Jfd

µliq(T0)
, Reynolds numbers;

T, temperature, K; T0, inlet temperature of liquid, K; Tsat, saturation temperature, K; u, filtration rate, m/sec; x, coor-
dinate, m; x~, mass flow rate vapor content; α, coefficient of interphase heat transfer, W/(m2⋅K); α~ = cliqJfRe0

−0.5

(PrI)−0.6 [16], coefficient of heat transfer on the inlet surface, W/(m2⋅K); ε, porosity; κ, absorption coefficient, 1/m;
λliq

0  and λv
0, molecular thermal conductivity of liquid and vapor, W/(m⋅K); λf and λs, effective thermal conductivity of

a heat carrier and particles, W/(m⋅K); µliq, µv, µf, dynamic viscosity of liquid, vapor, and a vapor-liquid mixture,
kg/(m⋅sec); θf = (Tf − T0)/(Tsat(patm) − T0); θs = (Ts − T0)/(Tsat(patm) − T0); θsat = (Tsat − T0)/(Tsat(patm) − T0); ρliq, ρv,
and ρf, density of liquid, vapor, and a vapor-liquid mixture, kg/m3; ρ~v, density of vapor at atmospheric pressure and
373 K, kg/m3; σ, scattering coefficient, 1/m; ξ = x ⁄ h; ξ1 = h1

 ⁄ h, ξ2 = h2
 ⁄ h. Superscripts: 0. molecular; I, II, III,

numbers of zones. Subscripts: 0, at the inlet to the bed; atm, atmospheric; Er, by Erungen formula; f, heat carrier; in,
interphase; liq, liquid; s, particles; sat, saturation; v, vapor.

REFERENCES

1. V. M. Polyaev, V. A. Maiorov, and L. L. Vasil’ev, Hydrodynamics and Heat Transfer in the Porous Elements
of the Constructions of Aircraft [in Russian], Mashinostroenie, Moscow (1988).

2. J. B. Kelley and M. R. L’Ecnyer, Transpiration Cooling — Its Theory and Application, JPC 422, Report No.
TM-66-5 (1966).

3. V. V. Maiorov and L. L. Vasil’ev, Heat transfer and stability for a moving coolant evaporating in a porous cer-
met, Inzh.-Fiz. Zh., 36, No. 5, 914–934 (1979).

4. A. Zeisherger, Boiling in particle beds in a two-dimensional configuration, Heat Mass Transfer, 37, 577–581
(2001).

5. V. P. Kolos, V. I. Khoreev, and A. E. Pobedrya, Toward calculation of the temperature field in fuel microele-
ments of nuclear reactors, Vestsi Akad. Navuk BSSR, Ser. Fiz.-E′nerg. Navuk, No. 1, 12–19 (1976).

6. V. P. Khoreev, Analysis of the thermophysical parameters of nuclear reactors with a finely divided fuel (fuel
microelements), Vestsi Akad. Navuk BSSR, Ser. Fiz.-E′nerg. Navuk, No. 3, 67–73 (1973).

7. V. I. Khoreev, A. E. Pobedrya, and V. P. Kolos, Distribution of a gas flow in a cylindrical dense layer con-
taining an internal heat source, Vestsi Akad. Navuk BSSR, Ser. Fiz.-E′nerg. Navuk, No. 2, 59–65 (1975).

8. M. E′. Ae′rov and O. M. Todes, Hydraulic and Thermal Principles of Operation of Apparatuses with a Fixed
and Fluidized Granular Bed [in Russian], Khimiya, Leningrad (1968).

9. V. A. Borodulya and Yu. P. Gupalo, Mathematical Models of Fluidized-Bed Chemical Reactors [in Russian],
Nauka i Tekhnika, Minsk (1976).

10. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], E′nergoizdat, Minsk (1981).

320



11. N. B. Vargaftik, Handbook of Thermophysical Properties of Gases and Liquids [in Russian], Nauka, Moscow
(1972).

12. Yu. Sh. Matros, V. I. Lugovskoi, B. L. Ogarkov, and V. B. Nakrokhin, Heat transfer in a blown-through fixed
granular bed, Teor. Osnovy Khim. Technol., 12, No. 2, 291–294 (1978).

13. V. I. Kovenskii, Toward calculation of the radiative characteristics of a concentrated disperse medium, in: In-
vestigation of Heat and Mass Transfer in Apparatuses with Disperse Systems [in Russian], ITMO AN BSSR,
Minsk (1991), pp. 10–15.

14. N. I. Gel’perin, V. G. Ainshtein, and V. B. Kvasha, Principles of Fluidization Techniques [in Russian],
Khimiya, Moscow (1967).

15. V. I. Krylov, V. R. Bobkov, and P. I. Monastyrnyi, Principles of the Theory of Computational Methods. Dif-
ferential Equations [in Russian], Nauka i Tekhnika, Minsk (1982).

16. E. M. Seliverstov, Investigation and Working-out of the Methods for Calculating Systems of Penetrating Cool-
ing for the Blades of High-Temperature Gas Turbines, Candidate’s Dissertation (in Engineering), Minsk (2004).

321


